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Abstract : The formulation of quarter sweep alternating decomposition explicit iterative (QSADEI)
method for the numerical solution of the non linear singular equations is discussed in this
paper. The concept of QSADEI method was inspired via combination between the quarter sweep
iterative and alternating decomposition explicit iterative (ADEI) methods. The proposed QSADEI
method shows the superiority over the corresponding Gauss seidal iterative method. The method
is applicable to problems both in Cartesian and polar coordinates. The convergence analysis is
briefly discussed. Numerical results are provided to illustrate the proposed method.
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Introduction
Consider the non linear two point boundary value problem

—u"+g(t,u,u')=0, a<t<b . @

subject to the natural boundary conditions u(a)= 4, u(b)=B

The two point boundary value problem mentioned above has a unique solution (Keller 1968)
and is of common occurrence in many fields of science and engineering, e.g., geophysics, quantum
mechanics, fluid dynamics, aerodynamics, etc. There are many methods available for the above
problems. Quarter sweep alternating decomposition explicit iterative (QSADEI) method is one
of them. The quarter sweep iterative method was initiated by Othman and Abdullah, 2000. The
concept of this method is extension of half sweep iterative method through explicit decoupled
group iterative method (Yousif and Evans, 1995). The QSADEI method explained in this paper
is combination of quarter sweep iterative method and alternating decomposition explicit iterative
(ADEI) method, earlier discussed by Sahimi et. al., 1993; Sulaiman et. al., 2004 has considered
QSADEI method for solving one dimensional diffusion equations, where the theoretical
convergence of the method is not discussed and their methods are only applicable to non singular
problems. Difficulties were experienced in the past for the numerical solution of singular equations
in polar coordinate. The solution usually deteriorates in the vicinity of singularity. In this paper,
the method is refined in such a manner that solutions retain their order and accuracy everywhere
in the solution region even in the vicinity of the singularity. We also discuss QSADEI and Newton-
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QSADEI method for linear and non linear two point boundary value problem (1) with fourth
order accuracy. The theoretical convergence of the method is discussed.

The finite difference approximation to equation (1) in case of the full-, half- and quarter
sweep iterative assume that solution domain can be uniformly partitioned into » + s subintervals

with interval of ,Wheres =1, 2, 4 respectively denotes full-, half- and quarter

sweep. Let us define iy =(u. —u, W(2sh):  wrss =(x3u,,, Mhu, +u,,, (2sh),

Ekirs =g(tkﬂ WUy ,;kisj , Uk =Uk _Z_g(ak+s _Ek—s ) 5/c :g(fk U :;kj

Then the fourth order finite difference replacement of (1) is
(Sl’l)z — - = 6
(., ~2u, +uk+s)+7[c;k+s + Gy +10Gy }+ o(r*)=0, k=s@EN ... @)

where u, denote the function satisfying the difference equation at the grids
t,=a+kh, k=0Q)N +s, s =1,2,4 of the discrete problem and u,=4 and u,  =B.

Mohanty et al., 2004a has discussed the fourth order method (2) for s = 1, where whole
inner grids are involved but implementation of quarter sweep (s = 4) involves nearly one quarter
of whole inner grids, and hence superior performance. To discuss the applications of finite
difference formula (2), let us consider the linear singular equation.

el 05t T o (e B

Up_g =2y Uy, = 12
where d(t)=% and e(f)Z%.

For « =0, 1 and 2, the above equation represents cartesian, cylindrical and spherical
problem, respectively. Applying the method (2) to the equation (3), we obtain

A shd shd
+_( 12) |:10 ekl/lk +[1_Tkjek+suk+s +(1+ 2 g jek—suk—s:|

2
+ (s7) {105;;( +(1——Sh;" jgm +(1+ Shzdk )gk_s} =0, k=s(s)N . (4)

12

where d,=d(t,), e, =elt,) etc.

330



Design and Analysis of Quarter Sweep ADEI Algorithm for Linear and Nonlinear Two Point
Boundary Value Problems Containing Singularity: Application to Burger's Equation

The difference scheme (4) is of fourth order accurate for the numerical solution of (1).

However, the scheme (4) fails when the solution is to be determined at k = s, the vicinity of the
singularity t = 0. We overcome this difficulty by modifying the method (4) in such a manner that
the solution retains its order and accuracy everywhere including the region of vicinity of the
singularity t=0.

We need the following approximations:

dy. =d, +(sh)d, + (S’;)z g o) (5a)
e =, + (sh)e, + ’;)Z arol?) L (5b)
Qrey =8i t(sh)g, + (SZ)Z gxol®) L (50)
where 9 :%’ dy :%' d/::_tzia etc.

Substituting the approximations (5) into (4) and neglecting O(hﬁ) terms, we get a linear

difference equation of the form

aguy_y+bou,+cou =RH,, k=s(s)N . (6)

where

—~

a =—1—;—Z[12dk ~2sh(2d; a2 )+ (sn) (@] ~d, d, )|+ Slhz)z [ek —%(24 —dkek)}

b, =2—%Zd}{ _d? —Sek)+%<e‘,; —dye;)

2
ck :—1+%[12dk+2sh(2d,;—d,§)+(sh)2(d,';—dkd,;)], + (Slhz) [ek+%(2e}{—dkek)}

RH, =%§)2[12 g +(snPle; ~d,g )]

Now we consider the non-linear singular equation of the form

nuuzb(t)u‘+uu'+c(t)u+g(t), O<t<1 @)
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an a 1

where b(Z)Z—T, C(f)Zt—zn and n represents a Reynolds number.

For o =1 and 2, the equation above represents the steady-state Burgers' equation in
cylindrical and spherical coordinates respectively. Now applying the formula (2) to the non linear
equation (7) and using the same technique discussed for linear singular equation, a difference

scheme of O(h“) for the equation (7) may be expressed as

B gt g, ==l =20y +uy ]
(sh)? | (A2¢; +(sh) ey —2shHbycp uy +c; (g, =20, +uy_ )}

+
12 +<sh ¢, —He, (bk +uk))(uk+s —Uy_ )—ZSth}{u,f

24| + (4 shby, — 4D (b, +u, )y, — 2u, +u, )

sh 3(“k+s +2uy +uy_ )(uk+s U )_H(bk +uy )(uk+s U )2 }

sh [ {025, + (s by ~2nttt, (b, +u o, )}

24 _—4H(bk +uy )4k(uk+s = 2uy +uk"‘)

.
+%;2gk +(sh)2g',; —2shHg}{ (bk +uk)]=0, k =S(S)N )
b c ]
sh y ’
Where H= Z . Ay sz Cog
A= @] @] @] u=

Note that, schemes (6) and (9) have local truncation erggys of @Q,i) and free from the

terms 1/(k + s), thus easily solved for k=5 (s) N in the region 0 <t< &y by
3. The Quarter-sweep Adei Methods
The linear difference equations (6) may be written in tri-diagonal linear system

Au = R ....... (10)
where

A(N=s)/s
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In case of s=1, 2, 4 for the respective formulation of full-, half- and quarter sweep ADEI
method (Sulaiman et. al. 1993), we split the matrix A as follows

where
and
6 6
=—\b.-1) r=—c
q, 5(5 ), 7 5

pi=

qs
0
GZZ
6a,,
—s g 26 g, =
6—(],- q ,qH—s

7, 0
92 T
0] O
In-s  Tv-s |
0 ay |

6 1
b, —=pr—1] i=
5( 1+s 6pll ]

s(s)N —s

Then quarter sweep alternating direction explicit iterative (QSADEI) method is given by

(a)I + Gl)u(j*llz) = (a)I - ¢G, )u(j) +R

(oI +G, )u(”l) = (I -gGl)u(ﬁl/Z) +gR LU

where 4 >0 is the acceleration paramete
g=1+wl6.
To discuss the algorithms, the QSADEI meth

(w+1

Py
0

0 0
o+l 0

Pas o+l
0] O

o+1

PnN-s

(j+1/2)

G, =|0

[o—gq,
0
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O O Us,
WO—84dy_s —8Fy—s M
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0 Tu 1Y T 0 N (T R

(w+q, T, U w-g U gR,
0 wtgy ny Ups —-8gy, w—g Uy gR,,
O O Us, = O O Us, +| gRs,
Otqy_g Tng M —8n-2s ®—g O M M
L O+qy | Uy | L —8Pn-s O—Z | Uy | | &Ry |
...... (12b)

Simplifying equations (12), we obtain following algorithms
Atlevel (j +1/2)

v 1 . .
ugj 12) = 1+ ((a) — 845 )ng) - grsug{v) + Rs)

ul-(f+1/2) = - ((a) — &4, )”z(j) - grl“l(iz - pi—s“i(Z:l/Z) + R;‘), i= 2S(S)N -8

1+ w
“S\{ﬂ/z) = L((a) — 89N )ISJ) - prsug\{:%/Z) +Ry )
1+ w
Atlevel (j+1)
ufV =—2gpy VD 1 (0- gl + gRy )
gy +®

) 1 ) ) A
ul ™ = p— (gt 4 (0= gl — IV 4 gR) 2y — (- s)as

uAngrl) = L ((w - g)u‘ngrIIZ) - K@ugfrl) + ng )
q; +

4. The Newton-quarter-sweep Adei Methods
For non linear difference scheme (9), we define

u, ¢S(1z))
Uy ¢25 u
w=|" o o)=Y
Uy ¢N(“)
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ay (u)zaii, k= ZS(S)N :
k—s

Then the Jacobian of may be written as

b,)  eu) |
azs(“) bzs(“) Czs(“)
T= O (0]
O O

ay (“) by (“)

with any initial guess ,©) , we define

=y A =012l L e (13)
where Ayl satisfies the system
Tau)=—glu"), j=01,2LL ... (14)

For Newton-QSADE method, we split the matrix T as

T=T,+T,+ T, T,

2,9(2):2152?, k= s{s)V—s

where &
1 0 0 i [q, r, 0 ]
Ps 1 0 0 q2s s
T,=|0 Py 1 T, = O O
0] @] ' qdN-s In-s
L P l_ L 0 dn |

Then Newton-QSADEI method may be written as (see Mohanty et. al. 2004)

(of + T, )" = —gu) )+ (oI + T, )

(ol +T, Y™ =— plu) }+ (I - gT)Au 2, j=0, 1, 2, ...

5. Convergence Analysis
Equations (11a) and (11b) can be written as
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WV e o (16)
where

G = (ol + G, ) (ol - gG, Nl +G,) (ol - gG,)

C = (ol +G, )‘1((w1 - 8GNl + G, + g)R

Assume that u is the exact solution of (10), then (G, +G,)u =R

and
(@ +G Ju= (ol -gG))u+R L (17a)
(I +Gyu= (ol -gG Ju+gR L (17b)

Let () _,0)_, isthe error vector, therefore from equations (11) and (17), we get
(I +G eV = (0l -G, )Y L (18a)
(0I+G, )0 = (I -gG e L (18b)
and hence g0+ _ Gg()
For the convergence, it is required to prove p(G)<1 forany ©>0 .
Define G = (0l +G,)G(wI +G,)"

= (I - gG, Yol + G, ) (oI - gG, Nl +G,)™
then G* issimilarto @, andhence p(G)= p(G*)

Let 2, and g bethe eigenvaluesof G, and @, respectively, then

1

A =1, yi:g(st—l), i=s(s)N

w
Since g=1+g>0 , Wwe have

[0 - g6, Yot +6) | s[(or - g6 ol + G, < Man =2 <1
i ) ;
H(wl - 8G, ol +G, )‘1H <|( - gG,)|-|(@I + G, ) < Max (o _Jrg“f <1
N Ny
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Thus we obtain
p16)- 62| <o~ 6.Yo + ) o -6 + )<

Hence the convergence follows.
6. Numerical Experiments and Comparative Results

To prove the efficiency of the implementation of the QSADEI method, two singular problems
are considered for computation whose exact solutions are known. The right hand side function
and boundary conditions may by obtained using the exact solution as a test procedure. All results
of numerical experiments, which were gained from implementation of the Gauss seidal, full (s =
1), half (s = 2) and quarter (s = 4) sweep ADEI algorithms has been recorder in the tables. While
solving non-linear equation, 5 inner iterations were considered. In all cases, we have taken

#Y =0 and the iterations were stopped when ‘u(f*l)—u(f)‘glo’“ was achieved.

Linear Singular Problem

u +%u' —%u:g(t), 0<t<1
t
The exact solution is . The root mean square (RMS) errors and number of iterations
for GS, full-, half- and quarter sweep ADEI methods are tabulated in Table-1.

Non-linear Singular Problem (Burger's Equation)
u(t)=e"
. a . o .
n(u +7u —t—zu)=uu +g(r), 0<r<1
The exact solution is given by u(¢)=¢2cosh(¢) - The RMS errors and number of iterations
both for Newton-ADEI (4 =1.2 ) and Newton-GS are tabulated in Table-2.
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Full-sweeps s =1 Half-sweeps s
N GS ADEl o,, RMS GS ADEl o,,
a=1

16 588 102 0.590 0.113(-03) 172 57 0.790
32 | 2112 192  0.477 0.805(-05) 588 102 0.590
64 7793 366 0.414  0.534(-06) 2112 192 0.477
128 | 29124 726 0.378  0.344(-07) 7793 366 0.414
256 1109287 1406 0.359 0.215(-08) | 29124 726 0.378
512 1410647 2882 0.349 0.577(-10) 109287 1406 0.359
a=2

16 436 88 0.644  0.128(-03) 128 48 0.910
32 1564 164 0.503  0.912(-05) 436 88 0.644
64 | 5768 323 0426 0.605(-06) | 1564 164  0.503
128 | 21558 608 0.384  0.389(-07) 5768 323 0.426
256 | 80986 1263 0.362 0.246(-08) | 21558 608 0.384
512 1304474 3094 0.352 0.852(-10) | 80986 1263 0.362

Table 1 : Comparison of the number of iterations and root mean square errors
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